Current Issue : July - September Volume : 2011 Issue Number : 3 Articles : 10 Articles
Background\r\nOur previous study revealed that administration of syngeneic female BALB/c mice with excessive self activated lymphocyte-derived DNA (ALD-DNA) could induce systemic lupus erythematosus (SLE) disease, indicating that overload of self-DNA might exceed normal clearance ability and comprise the major source of autoantigens in lupus mice. Serum amyloid P component (SAP), an acute-phase serum protein with binding reactivity to DNA in mice, was proved to promote the clearance of free DNA and prevent mice against self-antigen induced autoimmune response. It is reasonable to hypothesize that SAP treatment might contribute to alleviation of SLE disease, whereas its role in ALD-DNA-induced lupus nephritis is not fully understood.\r\nMethodology/Principal Findings\r\nThe ratios of SAP to DNA significantly decreased and were negatively correlated with the titers of anti-dsDNA antibodies in ALD-DNA-induced lupus mice, indicating SAP was relatively insufficient in lupus mice. Herein a pcDNA3-SAP plasmid (pSAP) was genetically constructed and intramuscularly injected into BALB/c mice. It was found that SAP protein purified from the serum of pSAP-treated mice bound efficiently to ALD-DNA and inhibited ALD-DNA-mediated innate immune response in vitro. Treatment of ALD-DNA-induced lupus mice with pSAP in the early stage of SLE disease with the onset of proteinuria reversed lupus nephritis via decreasing anti-dsDNA autoantibody production and immune complex (IC) deposition. Further administration of pSAP in the late stage of SLE disease that had established lupus nephritis alleviated proteinuria and ameliorated lupus nephritis. This therapeutic effect of SAP was not only attributable to the decreased levels of anti-dsDNA autoantibodies, but also associated with the decreased infiltration of lymphocytes and the reduced production of inflammatory markers.\r\nConclusion/Significance\r\nThese results suggest that SAP administration could effectively alleviated lupus nephritis via modulating anti-dsDNA antibody production and the inflammation followed IC deposition, and SAP-based intervening strategy may provide new approaches for treating SLE disease....
Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (d~80 nm) and adeno-associated virus (AAV serotype 5; d~20 nm), leading to average effective diffusivities that are ~3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only ~40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date....
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) presents great promise as an anticancer agent for human cancer therapy. In this study, a magnetofection agent (polyMAG-l000) was evaluated for in vitro delivery of TRAIL gene towards drug-resistant A2780/DDP ovarian cancer cells. Transfection experiments showed that polyMAG-l000 was able to transfect A2780/DDP cells in vitro, leading to a higher level of TRAIL gene expression in the presence of a static magnetic field as compared to other transfection agent, such as Lipofectamine 2000. TRAIL gene expression in the A2780/DDP cells was also confirmed by Western blot analysis. Moreover, the TRAIL gene expression exhibited remarkable decrease in the cell viability, as determined by MTT assay. Importantly, PolyMAG-l000-mediated TRAIL gene transfection in the presence of anticancer drug cisplatin (CDDP) induced much higher percentages of apoptotic A2780/DDP cells, compared to TRAIL gene transfection or CDDP treatment alone. A further study by Western blot analysis indicated that cytochrome c release and caspase-9 cleavage pathway were associated with the initiation of the apoptosis in A2780/DDP cells. The results of this study indicate that polyMAG-l000 can be used as an efficient agent for TRAIL gene transfection in ovarian cancer cells....
Chronic pain is experienced by as many as 9 0 % of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discusses the potential for viral vector-based treatment of cancer pain. It describes studies involving vector delivery of transgenes to laboratory pain models to modulate the nociceptive cascade. It also discusses clinical investigations aimed at regulating pain in cancer patients. Considering the prevalence of pain among cancer patients and the growing potential of gene therapy, these studies could set the stage for a new class of medicines that selectively disrupt nociceptive signaling with limited off-target effects....
Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus....
Background\r\nMazF is an endoribonuclease encoded by Escherichia coli that specifically cleaves the ACA sequence of mRNA. In our previous report, conditional expression of MazF in the HIV-1 LTR rendered CD4+ T lymphocytes resistant to HIV-1 replication. In this study, we examined the in vivo safety and persistence of MazF-transduced cynomolgus macaque CD4+ T cells infused into autologous monkeys.\r\nMethodology/Principal Findings\r\nThe in vivo persistence of the gene-modified CD4+ T cells in the peripheral blood was monitored for more than half a year using quantitative real-time PCR and flow cytometry, followed by experimental autopsy in order to examine the safety and distribution pattern of the infused cells in several organs. Although the levels of the MazF-transduced CD4+ T cells gradually decreased in the peripheral blood, they were clearly detected throughout the experimental period. Moreover, the infused cells were detected in the distal lymphoid tissues, such as several lymph nodes and the spleen. Histopathological analyses of tissues revealed that there were no lesions related to the infused gene modified cells. Antibodies against MazF were not detected. These data suggest the safety and the low immunogenicity of MazF-transduced CD4+ T cells. Finally, gene modified cells harvested from the monkey more than half a year post-infusion suppressed the replication of SHIV 89.6P.\r\nConclusions/Significance\r\nThe long-term persistence, safety and continuous HIV replication resistance of the mazF gene-modified CD4+ T cells in the non-human primate model suggests that autologous transplantation of mazF gene-modified cells is an attractive strategy for HIV gene therapy....
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disorder caused by point mutations in mitochondrial DNA (mtDNA). Most cases are due to mutations in genes encoding subunits of the NADH-ubiquinone oxidoreductase that is Complex I of the electron transport chain (ETC). These mutations are located at nucleotide positions 3460, 11778, or 14484 in the mitochondrial genome. The disease is characterized by apoplectic, bilateral, and severe visual loss. While the mutated mtDNA impairs generation of ATP by all mitochondria, there is only a selective loss of retinal ganglion cells and degeneration of optic nerve axons. Thus, blindness is typically permanent. Half of the men and 10% of females who harbor the pathogenic mtDNA mutation actually develop the phenotype. This incomplete penetrance and gender bias is not fully understood. Additional mitochondrial and/or nuclear genetic factors may modulate the phenotypic expression of LHON. In a population-based study, the mtDNA background of haplogroup J was associated with an inverse relationship of low-ATP generation and increased production of reactive oxygen species (ROS). Effective therapy for LHON has been elusive. In this paper, we describe the findings of pertinent published studies and discuss the controversies of potential strategies to ameliorate the disease....
Background\r\nNonviral vectors are attractively used for gene therapy owing to their distinctive advantages. Our previous study has demonstrated that transfer of human IFN? gene into nasopharyngeal carcinoma (NPC) by using a novel nonviral vector, minicircle (mc), under the control of cytomegalovirus (CMV) promoter was effective to inhibit tumor growth. However, therapies based on CMV promoter cannot express the targeted genes in cancer tissues. Previous studies indicated that the development of human NPC was closely associated with Epstein-Barr virus (EBV) and demonstrated the transcriptional enhancer function of oriP when bound by EBV protein. Therefore, the present study is to explore the targeted gene expression and the anti-tumor effect of a novel tumor-specific gene therapeutic system (mc-oriP-IFN?) in which the transgene expression was under the transcriptional regulation of oriP promoter.\r\nMethodology/Principal Findings\r\nDual-luciferase reporter assay and ELISA were used to assess the expression of luciferase and IFN?. WST assay was used to assess the cell proliferation. RT-PCR was used to detect the mRNA level of EBNA1. RNAi was used to knockdown the expression of EBNA1. NPC xenograft models in nude mice were used to investigate the targeted antitumor efficacy of mc-oriP-IFN?. Immunohistochemistry was used to detect the expression and the activity of the IFN? in tumor sections. Our results demonstrated that mc-oriP vectors mediated comparable gene expression and anti-proliferative effect in the EBV-positive NPC cell line C666-1 compared to mc-CMV vectors. Furthermore, mc-oriP vectors exhibited much lower killing effects on EBV-negative cell lines compared to mc-CMV vectors. The targeted expression of mc-oriP vectors was inhibited by EBNA1-siRNA in C666-1. This selective expression was corroborated in EBV-positive and -negative tumor models.\r\nConclusions/Significance\r\nThis study demonstrates the feasibility of mc-oriP-IFN? as a safe and highly effective targeted gene therapeutic system for the treatment of EBV positive NPC....
Cardiac gene therapy is one of the most promising approaches to cure patients with cardiac dysfunctions. Many ways of efficient gene transfer using viral vectors are tested, and some of them are already used in clinical settings. However, it is always important to be keenly alert to the possible complications when a new therapy is introduced. We present a case of myocardial sterile abscess in a swine model associated with a direct myocardial injection....
Purpose\nThe integrin av�Ÿ3 is differentially expressed on neovascular endothelial cells. We investigated whether a novel intravenously injectable av�Ÿ3 integrin-ligand coupled nanoparticle (NP) can target choroidal neovascular membranes (CNV) for imaging and targeted gene therapy.\nMethods\nCNV lesions were induced in rats using laser photocoagulation. The utility of NP for in vivo imaging and gene delivery was evaluated by coupling the NP with a green fluorescing protein plasmid (NP-GFPg). Rhodamine labeling (Rd-NP) was used to localize NP in choroidal flatmounts. Rd-NP-GFPg particles were injected intravenously on weeks 1, 2, or 3. In the treatment arm, rats received NP containing a dominant negative Raf mutant gene (NP-ATP�µ-Raf) on days 1, 3, and 5. The change in CNV size and leakage, and TUNEL positive cells were quantified.\nResults\nGFP plasmid expression was seen in vivo up to 3 days after injection of Rd-NP-GFPg. Choroidal flatmounts confirmed the localization of the NP and the expression of GFP plasmid in the CNV. Treating the CNV with NP-ATP�µ-Raf decreased the CNV size by 42% (P<0.001). OCT analysis revealed that the reduction of CNV size started on day 5 and reached statistical significance by day 7. Fluorescein angiography grading showed significantly less leakage in the treated CNV (P<0.001). There were significantly more apoptotic (TUNEL-positive) nuclei in the treated CNV.\nConclusion\nSystemic administration of av�Ÿ3 targeted NP can be used to label the abnormal blood vessels of CNV for imaging. Targeted gene delivery with NP-ATP�µ-Raf leads to a reduction in size and leakage of the CNV by induction of apoptosis in the CNV....
Loading....